AD-A068 967 MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE=-=ETC F/6 5/7
SPECIFYING THE SEMANTICS OF WHILE=PROGRAMS: A TUTORIAL AND CRIT==ETC(U)
MAR 79 I GRIEFr A R MEYER N00014—75-C-0661
UNCLASSIFIED MIT/LCS/TM=130

END

DATE

FILMED

6-79

. e

L i3

- 1\1!

iy
22 It nie

I

=

MICROCOPY RESOLUTION TEST CHARI
NATIONAL BUREAL of TANDARDS 1966 A

LABORATORY F OR ‘ | o INSTITUTE OF
COMPUTER SCIENCE TECHNOLOGY
D i AN

De MIT/LCS/T™-130 I
0 . |
s |
Q0
Ne
e SPECIFYING THE SEMANTICS OF W HILE-PROGRAMS:
<
E A Twterial and Critique of & Paper by Hoare and Laver

Irene Greif
Albert R. Meyer

COPY,

——— na——

DOC FiLE

BiSTATE 10N STATEMENT K.
Approvad for public release] e

Distribution Unlimited

April 1979

This work was supperted in part by the Advanced Research Projects Agency of the

Department of Defonse, monitered by the Office of Naval Research under
contract NOOOI4-75-C-0881, and in part by the Natienal Science Foundation

under grants MCST-198 and MCST7-075¢ A03

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE BEFOLE COMPLETING PORM B

|. REPORT NUMBER / 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
MIT/LCS/TM-130
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

l ‘ Specifying the Semantics of While-Programs: A

| Tutorial and Critique of a Paper by Hoare and : PORT NUMBER
nm* " CONTRACT OR GRANT NUMBER(S)
: i - /2y | NgppL4-75-Cc-g66l . |
(47 Yf;efnilcreif ami Albert R. Meyer l >y ,/Ns'r-ncsn-nsn.ﬂ e
T - L5 -MCs77-19754 403
~—19. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
MIT/Laboratory for Computer Science S et
545 Technology Square £)
Cambridge, MA 02139 = @
11. CONTROLLING OFFICE NAME AND ADDRESS 125 .
ARPA/Dept. of Defense NSF/Associate Program Dilr. |Marelilli®79
1400 Wilson Boulevard Office Computing Activit{f®s NUMBER OF PAGES
Arlington, VA 22209 Washington, D. C. 20550 38
T MONITORING AGENCY NAME & ADDRESS(I! different from Controlling Office) | 15. SECURITY CLASS. (of this report)
ONR/Dept. of the Navy
Information Systems Program HacLassissed
Arlington, VA 22217 15a. DECL ASSIFICATION/ DOWNGRADING
SCHEOULE

16. DISTRIBUTION STATEMENT (of this Report)

7o | 4op. |
Approved for public release; distribution unlimited (-// 5 Y

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse aide if necessary and | ity by block ber)
semantics of programming languages

\ Tor
| i |

20. ABSTRACT (Continue bn reverse side If neceseary and identity by blgck number)

hree kinds of mathematical objects 'which can be designated as the “meaning”
or "semantics” of program& binary relations between initial and final states, binary relations on
predicates (partial correctness semantics), and functionals from predicates to predicates (predicate
transformers). We exhibit various formal specification mechanisms: induction on program syntax,
axioms, and deductive systems. We show that each kind of semantics can be specified by several 7
different mechanisms. As long as arbitrary predicates on states are permitted, each kind of -

DD . 5%"s 1473 eoiTion oF 1 NOV 68 1S OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

e e I
Ly i i j

SECURITY C PICATION OF THIS P Date Brisrod)

20.

emantics uniquely determines the others — with the sole exception of the weakest pre-condition
semantics for nondeterministic programs.)\

\
,\‘
\

ACGESS N for 4
NIIS Wi e Section

DDC B Seaor 3 f
HNANMD INCTD 0
R8T AT
RY
DISTRIBUT™/AVA /A 0oL
[0, AL
ﬁ1 | :
i \ ‘

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

> " R i e e e i Gt i e

MIT/LCS/TM-130

SPECIFYING THE SEMANTICS OF WHILE-PROGRAMS:

A Tutorial and Critique of a Paper by Hoare and Lauer

Irene Greif and Albert R. Meyer

March 1979

This research was supported by the Advanced Research
Projects Agency of the Department of Defense and was
monitored by the Office of Naval Research under Contract
No. N00014-75-C-0661, and in part by the National Science
Foundation under grants MCS78-17698 and MCS77-19754 A03.

Massachusetts Institute of Technology
Laboratory for Computer Science
Cambridge Massachusetts 02139

SPECIFYING THE SEMANTICS OF WHILE-PROGRAMS:

A Tutorial and Critique of a Paper by Hoare and Lauer

; by
§ Irene Greif and Albert R. Meyer

| Massachusetts Institute of Technology
i Cambridge, Massachusetts

Abstract

We consider three kinds of mathematical objects which can be designated as the "meaning”
or “semantics™ of programs: binary relations between initial and final states, binary relations on
predicates (partial correctness semantics), and functionals from predicates to predicates (predicate -
transformers). We exhibit various formal specification mechanisms: induction on program syntax,
axioms, and deductive systems. We show that each kind of semantics can be specified by several
different mechanisms. As long as arbitrary predicates on states are permitted, each kind of
semantics uniquely determines the others — with the sole exception of the weakest pre-condition
semantics for nondeterministic programs.

KEY WORDS: semantics of programming languages

This work was supported in part by the Advanced Research Projects Agency of the Department of
Defense, monitored by the Office of Naval Research under contract N0OOOI4-75-C-0661, and in part
by the National Science Foundation under grants MCS78-17698 and MCS77-1975¢ A03.

1. Introduction

Our aim in this paper is to clarify the characteristics of a proper specification of
programming language semantics. We illustrate alternative specifications of several different kinds
of semantical objects and examine the extent to which these different semantics capture the same
information about programs.

Hoare and Lauer [i974) have advocated using a variety of styles of programming language
definitions to fit the variety of users from implementers to program verifiers. They consider the
question of whether different specifications determine the same language by showing that the
specifications are what they call “consistent”. However, their treatment skirts the question of
whether the specifications can each be taken to determine the language adequa(ely.' Although, as
we will show, any one of the kinds of semantical specifications they discuss -- operational
definitions, relational “theories,” and partial correctness assertions -- can be used to determine
meaning uniquely, Hoare and Lauer do not make the case in their paper. In fact, both their
relational and partial correctness specifications are satisfied by several different semantics, only one
of which is desired.

We basically agree with Hoare and Lauer that alternate specifications can and should be
given, but feel that the difficulties noted above indicate the need for more careful attention.
Additional pitfalls which we attempt to avoid include confusion between the mathematical object
which is designated (o be the meaning of a program and methods for specifying that object;
confusion between consistency and equivalence of two definitions; between completeness of a theory
and its having a unique model. While these issues are familiar in mathematical logic, we take this
opportunity to survey them in the context of the programming language semantics of a trivial class
of while-programs. Because these programs are trivial, none of the challenging research problems
concerned with explaining how complex programs behave, or what they "mean,” can arise. This
allows us to focus more clearly on the way in which the semantics are specified, without being
distracted by any difficulty in understanding what that semantics may be.

Of particular interest to us is the thesis that a programming language semantics can be
specified by giving all the "before-after” assertions true of programs in the language. This thesis
appears first to have been put forward by the title of Floyd's seminal paper [1967). Hoare and
Wirth [1973] carried out the first serious attempt to apply the thesis in practice by specifying the
semantics of a substantial fragment of the programming language PASCAL in this way. More
recently, Dijkstra has advocated a similar approach to explaining semantics [Dijkstra, 1976, p. 17}

"..we know the possible performance of the ... [program a] ... sufficiently well, provided that
we can derive for any post-condition ... [Q) ... the corresponding weakest pre-condition ...
[wpa(O)] ... because then we have captured what the ... [program)] ... can do for us; and in the
jargon the latter is called ‘its semantics’.”

In Sections 2 and 3 we consider different techniques for specifying the input-output behavior,
i.e, relational semantics, of programs. In Sections 4 and 5 we analyze semantics bzsed on sets of
partial correctness assertions and weakest pre-conditions

e

Since most of the proofs are entirely routine, we have postponed them to appendices.
Nevertheless, for completeness most of the proofs are given.

This paper can be read without prior familiarity with Hoare and Lauer’s paper.

2. The Programming Language and Meanings for It
21 W hile-Programs

Following Hoare and Lauer, we examine alternative specifications of the meaning of a trivial
programming language with primitive statements, while statements, and statement fists. The syntax,
omitting details of the form of predicate expressions is as follows:

<program> := <primitive statement> | <while statement> |
<program>;<program> | NOP

<while statement> ::= while <predicate expression> do <program>

As is usual with abstract syntax, we will not concern ourselves with ambiguity in parsing or with
detailed syntax of expressions and primitive statements.

We assume that programs run on machines with states. We treat the states simply as abstract
elements in some fixed set S, ignoring their internal structure. In many familiar examples primitive
statements define total functions from states to states, but we need not make this assumption.
Primitive statements may be partial, ie. for some state s there may be no related state, and
nonfunctionalz, ie. for some states s there may be more than one related state. A primitive
statement, 4, thus has an effect on states which can be defined by giving an initial-state, final-state
relation R 4 SxS such that (s, s*) € R 4 iff A executed in s can terminate in state s°.

Example: Suppose that a state is an assignment of values to variables (to be thought of as a state
of computer memory giving the contents of all the registers, arrays, etc.), and consider the primitive
assignment statement choose u in U where u is a variable of some basic type and U is a variable
ranging over finite sets of elements of the same basic type. Then (ss') € Repoose u inu Hf
$(X) = s*(X) for all variables X= u and s'(u) € s(U).

Note that R 450¢, 4 in U IS partial because s(U) may be empty, and is nonfunctional because
s(U) may have more than one element.l

A predicate P is a mapping from states to truth values. Predicate expressions p, q,... appear
in programs. We will use P, Q,., respectively, to denote the predicates corresponding to these
expre:sions.3 For simplicity, we assume that predicate expressions always yield values, so that the
predicate P associated with an expression p is true or false at each state and is never undefined.

We use the following notation throughout what follows:

a b ¢ programs,

A primitive statements,

5t states (elements of the set S of all states),

P.q predicate expressions,

P.Q predicates on states,

L.M,R binary relations on states (subsets of SxS),
MR binary relations on predicates (subsets of 25x25),

Each of these letters may appear with subscripts or multiply primed, eg. 5. s', Q" etc.
22 Semantics and Specifications

A semantics for a programming language is a mapping from programs to objects in a
domain of meanings. Examples of meanings are sets of state sequences, relations on states, relations
on predicates, and functionals on predicates (predicate transformers). A semantical specification
determines such a mapping, or perhaps a family of acceptable mappings, from programs to
meanings. Thus, we do not require that a specification determine semantics uniquely. For example,
in a typical specification error messages may be left to an implementer's discretion. Differing
implementations of error messages will then correspond to differing semantical mappings which
satisfy the specification (cf. section 4.5).

A semantics is a mathematical object, and distinctions among semantics can be made
precisely. In contrast, our classification of specification techniques is informal -- we do not attempt
to give a precise or exhaustive characterization of methods for specifying semantics. Examples of
specification techniques include operational definitions, inductive definitions, axioms, and deductive
systems. It should be clear by example below what we will mean by the last three. Loosely, what
we mean by an operational definition is one which has a computational flavor reflecting the step
by step execution of programs. Operational definitions are not considered in this paper. Two
examples appear in Hoare and Lauer's paper in their “interpretive" and “computational®
definitions. In particular, their interpretive definition is an abstract machine which can execute
program steps.

A semantics can also have a computational flavor. An example is a mapping of programs
Into sets of state sequences, where each sequence consists of the successive states which are reached
during execution of the program. The second "computational” definition in the Hoare and Lauer
paper is of just this semantics.

= =

S

&

We note that such an "operational” semantics need not be specified operationally. In fact, we
can easily write a concise inductive specification of this semantics for our language. Each program
a is mapped into the set of state sequences (or trajectories) Tr,. We assume that the initial-state,
final-state relations, R 4, of primitive programs A are given. The state sequence meaning, Tr 4, of
A is the set of sequences ss' such that (s5') € R 4. The state sequence meanings of other programs
are defined by induction on program structure, as follows:

TRIL Tryop = {ss | ¢ 2 state},
TR2. Trgyp = TrgiTry,

TR3. Tryitepdoa = (TrP:Tra)”:Tr_,P.

where Trg,:Tr, is the set of state sequences sp.5o.53 such that s5).50 € Tr, ana
s9..53 € Try, Trp ={s5|P(s)}, and (Try* « AUTrUTKTrU.., where A is the singleton set
containing the null sequence (defined to act as an identity element under the “" operation).*

This association of sets of state sequences to programs is the same as that specified by Hoare
and Lauer, and it clearly describes a reasonable kind of temantics for our language. To see this,
note that NOP does not change the state, and the prczram a;b will follow a computation sequence
5 .. ' iff the program a started in s can follow a computation sequence s ... t and the program b
can follow ¢ ... s'. Similarly, for while loops, if P(s) then s ... s’ is a computation sequence iff there
are sequences s ... §), 5 ... S, .., 5 .. ' Which are computations of g, Fis;) for all the 5;, ~P(s’), and
S..8' =5 .55 59 5y . 8" If 2P(s) then while p do a acts like a NOP on s, that is, ss €

Truhite p do a

Hoare and Lauer show that their two operational definitions are “consistent” in that both
define the same standard relational semantics, R, mapping program a to relation R,. These

initial-state, final-state relations can be defined as follows:
Ry = {(s,t) | there js a sequence s ... t € Trg}.

Thus the standard relational semantics can be defined in terms of the state sequence
semantics. (Consequently any specification of the latter semantics indirectly also specifies the
former. It will accordingly be important to keep track of which kind of meanings are being
specified in any given context. We illustrate this point further in Section 4.4.)

In addition to considering how a specification determines a semantics, we will examine ways
in which differing semantics can determine one another. We shall say that one semantical
mapping determines another iff any two programs which are assigned the same meaning in the
meaning domain of the first semantics are also assigned the same meaning in the meaning domain
of the second semantics. Two semantics are equivalent iff each determines the other. Thus, even if
the domains of meaning of two semantics consist of distinct kinds of mathematical objects, it may be
that the two semantics can be considered equivalent by this definition.

Equivalent semantics make exactly the same distinctions among programs. Thus the

B

r

meaning of a program according to one semantics uniquely determines the meaning of that
program according to all equivalent semantics. From a mathematical point of view this means that
equivalent semantics provide exactly the same information about programs. Of course the method
for transforming one meaning into another may be laborious or otherwise inconvenient. This is
the rationale for making avaiiable independent specifications of semantics which may be

equivalent. A similar rationale applies for presenting a variety of different specifications for the
same semantics.

To illustrate these definitions, note that the state sequence semantics determines the standard
relational semantics, since Tr, = Try clearly imphes R, « R, It should also be clear that they are

not equivalent: NOP and NOP,NOP are the two most trivial programs with distinct state sequence
meanings but the same standard relational meaning.

We will show that the standard partial correctness semantics considered in Section 4, two out
of three of the predicate transformer semantics in Section 5, and the standard relational semantics
are equivalent, but wp (Dijkstra's weakest pre-condition predicate transformer) and the standard
relational semantics are incomparable, i.e, neither determines the other.

3. Relational Semantics

In this section we will consider several akernative specifications of the standard relationa)
semantics, R, which associates with each program g the relation R, defined in Section 2. More

generally, an arbitrary relational semantics M is any mapping which assigns to each program a
some relation M, c SxS.

31 An Inductive Definition

A simple definition of the relation R; to be associated with any program a can be given by

induction on the syntax of programs, using only familiar mathematical operations on relations. In
order to do this it is convenient to define RP for any predicate expression p to be {(s, 5) | P(s)}. For

R R © $xS, let R)" be the reflexive transitive closure of R}, and Rj°Ro the composition of R} and
Ro. We assume that relations R 4 for each primitive statement A are given. Then the relations
associated with programs can be defined as follows:

Rl Rpyop = {(s.5) | s €S} = the identity on S,
R2. Rgp=RgoRy
R3 RW*‘I‘ P do a" (RP.RG)‘..RT'

This specification is trivially derived from TRI-3 given in Section 2; obviously R1-3 specifies
directly the same standard relational semantics that TRI-3 specified indirectly.

sl

3.2 Some Axioms for the Standard Relational Semantics

Hoare and Lauer choose to specify the standard relational semantics by giving a system of
axioms for statements of the form “started in state s, program a terminates in state s*." We shall
refer to such assertions as “transition assertions”, and follow Hoare and Lauer in using the notation
s(a)s’ to denote such a statement. Thus,

Definttion I: s(a)s* 1s true for M iff (s, 5') € M4, where M is an arbitrary relational semantics.
Their axioms are as follows:
HLL s(A)s' « (s, 5') € R
HL2. s(ab)s’ « 3tls(a) A t(b)s*),
HL3. s(while p do a)s' + —P(s"),

HL4. Vs), 50l(Qfs)) A P(s)) A 5i(a)sg) =+ Qso)] -+
[(Qfs) A s(while p do a)s’) +Q(s*)),

HL5. s(NOP)s’' « s = s'.

They go on (o prove that the standard relational semantics R is a model of HLI-5, that is,
every instance of HLI-5 1s true for R, so that any conclusion which logically follows from these
axioms will be true of the standard semantics.

Of course this meets only half the requirements for specifying the semantics, since one must
also show that any transition assertion which is true of the standard semantics follows logically
from the axioms. Unfortunately HLI-5 do not imply all the true, assertions, contrary to the
“intuitive confidence in the completeness of the theory” expressed by Hoare and Lauer [p. 144), as
we now illustrate.

We can understand the significance of HLI-5 as follows. If M is a model of HI, we can
conclude that M 4 = R 4 for each atomic statement A. Similarly, from HL5 we conclude that
M yop = the identity on S = Ry p, and from HL2 that Mg.p = Mg°My. It follows that M, = R,

for every while-free program a whenever M is a model of HLI, 2, 5.
Now consider the particular "divergent loop" relational semantics L. defined as follows:
Lq = R, if a is while-free,
L; = ¢ otherwise.

Then L is obviously a model of HLI, 2, 5. But s(while p do a)s’ is always false for L, so HL3-4
are true, vacuously, for L. Hence L is also a model of HLI-5.

The divergent loop semantics corresponds to an implementation in which the interpreter
simply loops unconditionally whenever it starts to execute a whtle statement. S nce L is a model,
statements which logically follow from HLI-5 must always be true of this implementation. In
particular, no transition assertion involving a program containing a while-loop follows from HLI-5,
and so it seems hard to imagine circumstances in which HLI-5 would serve as an adequate
characterization of the standard semantics. (However, in Section 4.4 we try to set matters right by
indicating a sense in which HLI-5 do in fact specify R.)

33 A Complete Set of Axioms for the Standard Relational Semantics

There is no inherent obstacle to presenting axioms in the spirit of HLI-5 which correctly and
completely specify the intended semantics. Indeed, adding two more axioms will suffice:

HL6. —P(s) =+ s(while p do a)s,
HL7. [P(s) A s(a)s* A s'(while p do a)t] » s(while p do a)t.

It is easy to verify that the standard semantics is a model of HLI-7. In Appendix A we
prove:

Theorem 1: The standard relational semantics is the only model of HLI-7.
We remark that HLI-7 can be shown to be independent, i.e, Theorem | is not true when any
one of HLI-7 is omitted.
3.4 A Deductive System for the Standard Relational Semantics

Another, perhaps more straightforward, way to specify the standard relationa! semantics is to
give a system of axioms and inference rules for deducing transition statements. One such system is:

Axioms:
T s(A)s’, forall s, s' €S such that (s, 5') € R4
T2. s(NOP)s,
T3. swhile p do a)s, for all 5 € S such that ~P(s).
Inference Rules:
T4 s(a), t(b)s’ +~ s(ab)s’,

T5. s(a)t, while p do a)s' ~ s(while p doa)s’, for all s € S such that P(s).

|
y
|
§

e

Let Th(T1-5) be the set of transition statements provable from T1-3 using T4-5.
Lemma I: R, = {(s, 5') | s(a)s’ € Th(TI-5)}.

The proof, which we omit, is a routine induction on the structure of ¢ and the number of

executions of the body of a while-loop. (Cf. Appendix E, however, for a similar proof for a more
general deductive system.)

Thus, the deductive system TI-5 specifies the same relational semantics as RI-3, and either
can serve as the definitive specification. (We caution the reader not to confuse this deductive
specification of a relational semantics, with the deductive "theory™ of Hoare and Lauer which we
treat in Section 4.2 as a specification of a partial correctness semantics.)

The specification of R, in terms of Th(TI-5) given in Lemma I can be rephrased in terms of

familiar properties of deductive systems. Namely, TI-5 is sound for R, which means that every
termination assertion in Th(T1-5) is true for R, and TI-5 is complete for R, which means that every
termination assertion true for R is in Th(T1-5). Thus we can restate Lemma 1 as

Theorem 2: The set of transition assertions derivable in the system TI-5 is equal to the set of
transition assertions true for the standard relational semantics.

4. Partial-Correctness Specifications and Semantics

Assertions of the form "if P holds before executing a, then if and when g halts, Q will hold"

occur frequently when the behavior of programs is being described. Such assertions are called
partial correctness assertions (pca's) and are abbreviated P{a}Q,

We shall define a partial correctness semantics for our programming language to be any
mapping which assigns to each program a some binary relation on predicates. Any relational
semantics M naturally determines a corresponding partial correctness semantics .# which assigns

to program a the relation ../ consisting of those pairs (P, Q) such that P{a}Q is true of M &

We shall observe that every relational semantics is equivalent to its associated partial

correctness semantics. We give a complete deductive system for pca’s and an axiom system for

pea’s. The pca's will serve as specifications of partial correctness semantics as well as specifications
of relational semantics. The significance of specifications which have many relational models is
considered, and we analyze several such specifications.

41 The Standard Partial Correctness Semantics

Definition 2: A partial correctness assertion consists of a program a and a pair (P, Q) of predicates
on states, and is written "P{aJQ" The pair (P, Q) holds for a binary relation, R, on states

rﬁ - v - —

if Vs, s'[(P(s) A (s, 5') € R} = Q(s")). P{a}Q is true for a relational semantics M iff (P, Q) holds
for M,.

The partial correctness semantics # in which %, = {(P, Q) | P{a}Q is true for R} is called
the standard partial correctness semantics.

An arbitrary relation .4 on predicates also determines a relation on states in a natural way.
The relation is the maximum relation, M, such that all the pairs in .# hold for M. (That there
always is such a maximum relation is shown in Appendix B, Lemma Bl) The rationale for taking
this relation on states ta be the one determined by a partial correctness semantics is nicely expressed
by Schwarz [1974, p. 28):

"Asserting a partial correctness statement is essentially asserting that certain
environments are not the results of cxecuting some command starting in certain
other environments.. This is a negative requirement, it does not force any
environment to he the result of any execution. Since this is the inherent nature
of the formalism it indicates that the proper kind of definition of the semantics
determined by a system should have the form: 'largest possible semantics.” *

Definition 3: Let .4 be a binary relation on predicates. Then
max(.«) = {(s, t) | P(s) = Qft) for all (P, Q) €).

We prove in Appendix B that max(.#) is indeed the maximum relation on states for which
all the pairs of predicates in ./ hold. Moreover, we prove

Lemma 2: Let M be a relational semantics. Then M, = max{(P, Q) | P{a}Q is true for M}.

An immediate consequence of Lemma 2 is that R, = max{ %), which implies that the

standard partial correctness semantics determines the standard relational semantics.” The converse
determination follows by definition of 7, namely, %, = {(P, Q) | (P, Q) holds for R;}. Thus we

have
Theorem 3: The standard relational and standard partial correctness semantics are equivalent.

This theorem and the underlying Lemma 2 provide formal justification for the thesis that
the initial-state final-state behavior of programs can be specified by the set of pca's true of the
programs8

4.2 Deducing Partial Correctness

The standard partial correctness semantics can, like the standard relational semantics, be
specified by a simple system of axioms and inference rules. The notion of the weakest antecedent,

24

(RIQ . of a predicate Q under a relation R is used in the axioms for primitive instructions.
Informally, [R]Q is the predicate on states which is true of a state s provided that, if and when a
program with initial-state, final-state relation R halts after being started in s, the predicate Q will
necessarily hold.?

It is worth emphasizing that we will keep to the usual mathematical conventions in the
vacuous case, namely, if the program does not halt started in state s, then [R)Q is true of s for any
predicate Q.

Definition 4. Let R be a binary relation on states. For any predicate Q on states, the weakest
antecedent of Q under R is a predicate, [R]Q , on states defined by

((RIQX) iff (¥s*)M(s,s') € R » Qfs")].

It follows immediately from Definitions 2 and 4 that ([M,]JQ){a}Q is true for any relational
semantics M which is why [M,]Q is called an "antecedent” of Q,

We shall use the notation "=(P -+ Q)" to mean that predicate P implies predicate Q, that is,
Vs(P(s) = Qfs)). The following lemma explains why [M,)Q_is called "weakest.”

Lemma 3: Pla}Q is true for M iff =(P = [M]Q).

The proof follows directly from the definitions and is omitted (cf. [Pratt, 1976; Harel, Meyer,
Pratt, 1975; Schwarz, 1974)).

The following system is usually referred to as the Floyd-Hoare system for partial correctness.
Axioms:

FHL. P{NOP}P,

FH2. (R JQIAQ.

Inference Rules:
FH3. P{a}P’, P'{b}Q - P{ab}Q.,
FH4. (P A Q){a}Q - Qjwhile p do aQA — P),
FHS. P{a}Q ~ (P A P'){alQ vQ)).

Let Th(FHI-5) be the set of pca's derivable from FHI-2 using FH3-5. We prove in Appendix
C, that FHI-5 specifies the standard partial correctness semantics. Formally, we can state

Lemma 4. 7, = {(P, Q) | P{a}Q € Th(FHI-5).

We have formulated Lemma 4 to emphasize our view of the system FHI-5 as a specification
of a mathematical object, namely, a partial correctness semantics which turns out to be the standard
one. As we did earlier for termination assertions we can also rephrase Lemma 4 from the more
familiar viewpoint that truth of pca’s is to be reckoned relative to the standard relational semantics.
Then Lemma 4 means that FHI-5 1s a sound and complete deductive system for pca’s, that is,

Theorem 4: The set of partial correctness assertions derivable from FHI-5 is equal to the set of
partial correctness assertions true for the standard relational semantics.

The system FHI-4 consisting of the first four of the Floyd-Hoare rules corresponds to the
Deductive Theory!0 DI-3 of Hoare and Lauer {p. 146). The system FHI-4 is not complete, but we
will see in Section 45 that there is a sense in which the incomplete system FHI-4 specifies the
standard relational semantics.!!

4.3 Axioms for Partial Correctness Semantics
Although a deductive system resembling FHI-5 is the more usual specification of the
standard partial correctness semantics, we can also write an axiom system to specify it. The axioms
are suggested straightforwardly by the deductive system.
PClL. P{NOP]Q « (P + Q)
PC2. P{A}Q « =(P + [R 4IQ),
PC3. P{a:b}Q « 3P'(P{a}P’ A P'{5]Q).
2C4. Quhile p do a}QT « 3Q TP A Q"{a}Q" A =(Q » Q") A
=((Q"A-P)+Q"]

To say how these axioms specify the partial correctness semantics we recall the technical
meaning of the word model and distinguish two special kinds of models.

A mathematical object is said to be a mode! for a set of assertions if all the assertions are true
for the object. We have already used this notion in Section 3 where the objects were relational
semantics and the assertions were transition assertions. By Definition 2 we know what it means for
a pca to be true of a relational semantics, and hence we know when a relational semantics is a
relational model for a set of assertions (such as PCI-4) involving pca's. We can also regard a pca as
making an assertion about partial correctness semantics.

Definition 5: P{a}Q is true for a partial correctness semantics Aiff (P, Q € .M. A partial

13

correctness semantics is a partial correctness model for an axiom system (such as PCI-4) iff itis a
model for the set of all instances of thase axioms.

Note that Definitions 2 and 5 are compatible in that if M is any relational semantics and .#

is the corresponding partial correctness, then P{a}Q is true for M iff it is true for _# In particular
P{a}Q has the same truth value in both the standard relational and partial correctness semantics.

Theorem 5(deBakker!?): The standard partial correctness semantics is the only partial correctness
model of PCI-4.

The proof is in Appendix D.

Again, we have formulated this theorem to emphasize our view of PCl-4 as uniquely
specifying a particular partial correctness semantics.

44 Relational Models for Partial Correctness Specifications l

] We have just considered FHI-5 and PCl-4 as direct specifications of partial correctness
semantics. We now take the more usual view and consider FHI-5 and PCl-4 as specifications of
relational semantics according to their relational models. Thus we can rephrase Theorems 2, 4 and
5 in part by saying that R is a relational model of TI-5, FHI-5 and PCI-4.13

Notice that despite Theorems 2 and 4, we cannot say that R is the only model of TI-5 or
FHI-5. For example, the “"empty” semantics which assigns the empty relation to every program is a
model of FHI-5, and the semantics which assigns the “total” relation $xS to every program is a
model of TI-5.

A set of pca’s will generally fail to have a unique relational model because, as suggested by
the quotation in Section 4.1, pca’s are "anti-monotone” in the following sense. 1f M and N are
relational semantics then we shall say that N is larger than M iff Ng > M, for all programs a.

Then by Definition 2 we see that if P{a}Q is true for N, and N is larger than M, then P{a)Q
is also true for M. Thus, since R is a model of FHI-5, so is any relational semantics smaller
than R4

On the other hand, Theorem 4 and Lemma 2 together imply that R is larger than any
model of FHI-5, sc we can conclude

Theorem 6. The standard relational semantics is the largest relational model of FHI-5.

Similarly, transition assertions are "monotone” in the sense that if s(a)s’ is true for M, and
N is larger than M, then s(a)s’ is true for N. We conclude from Theorem 2 that

Theorem 7. The standard relational semantics is the smallest model of T1-5.

e ————— e A AR A

I4

Finally, we can deduce from Theorem 5 that
Theorem 8: The standard relationa| semantics is the only relational model of PCi-4.

Thus, Theorems 6. 7. and 8 reveal precisely the different ways in which R s determined
uniquely by the specifications FH|-5, TI-5, PCl-4.

determined by relational semantics, only the partial correctness semantics ~Hdetermined by R isa
model of PCl-4. Op the other hang, Theorem 5 asserts that among au partial correctness
semantics, not just those determined by relations, % s the unique model.

45 Implications Between Semantical Specifications with Several Models

The need to deal with specifications having several models of a given kind was aliowed for
by Hoare and Lauver in their formulation of what they cal| "consnstency' between semantical

specifications, They say that one specification js consistent with another iff every model of the
latter is a mode) of the former.

Notice that this definition s Asymmetrical, and so conflicts with ordinary usage of the word
“consistency.” For this reason, we shaj refer to “implication" between specifications, that s,
Specification .7 implies specification .7 {ff every model of ./'is a model of .7,

Semantical Specifications with more than one model can be useful. We have Just seen that
while FHI-5 and T}-5 technically speaking have many relational models, nevertheless they uniquely
specify R in , natural way as the largest relational model and smallest relational model,
respectively. Even more generally there may be situations in which any of severa} models would
suffice for some application, and we wish only to specify this set of Appropriate models -- not
necessarily dtsunguishlng canonical model in the set by some criterion such as maximality. For
example, in the specification of practical programming languages it s typical to Jeave undefined
the meaning of certain Syntactically well-formed Programs. In such cases there will be many

acceptable semantics differing only on the Meanings, eg., error messages, they assign to
“meaningless" programs.

15

In particular, Hoare and Lauer [Theorem 4] observe that HLI-5 implies the first four Floyd-
Hoare rules FHI-4!® For some reason they do not consider the converse question of whether FHI-4
implies HLI-5. In fact, it does not; not even the full Floyd-Hoare system FHI-5 implies HLI-5. This
ts because any M smaller than R is a relational model of FHI-5, so that, for example, the empty
semantics is a model of FHI-5 but not of HLL-5.

However, Hoare and Lauer's proof that HLI-5 implies FHI-4 actually establishes a slightly
stronger result which we can use to reveal the connections between HLI-5, FHI-4, and R.

An inference rule such as any of FH3-5 or T4-5 will be called sound for a relational semantics
M, if, whenever the conditions (such as those for T5) for applicability of the rule are satisfied and
the antecedent(s) of the rule is true for M, so is the consequent. In other words, an inference rule
is sound 1f application of it preserves truth.

Lemma 5: 1f M is a model of FHI-2 and the inference rules FH3-4 are sound for M, then M is a
model of FHI-5.

Proof: 1t is eacy to see that FH5 is sound for all M.

Theorem 9 R is the largest relational model of FHI-2 for which the inference rules FH3-4 are
sound.

Proof: We let the reader convince himself that FH3-4 are sound for the standard relational
semantics R (cf. [Hoare and Lauer, Theorem 4]). Thus, R is "a" mode}; that it is “the largest”
model is immediate from Theorem 6 and Lemma 5.1

Lemma 6(Hoare and Lauer): Let M be a model of HLI-5. Then M is a model of FHI-2 and the
inference rules FH3-4 are sound for M.

We shall not repeat the proof (¢f. [Hoare and Lauer, page 147]).
Theorem 10: R is the largest model of HLI-5,
Proof: Immediate from Theorem 9 and Lemma 6.}

The preceding theorems thus reveal the sense in which HLI-5 and the first four Floyd-Hoare
rules FHI-4 serve as semantical specifications equivalent to the others we have considered -- a
rather obscure technical sense which was left implicit by Hoare and Lauer1®

Our point here is that while we agree with Hoare and Lauer that relationships like
implications between specifications with multiple models are important ideas, it is even more
important to have a clear understanding of the family of models which are to be regarded as
meeting the specifications. This is illustrated by the fact that the semantics L of Section 3.2 is a
relational model both of HLI-5 and FHI5 yet we certainly do not mean to accept an
implementation of our language in which all while-loops diverge.

e

5. Predicate Transformers

There is yet another kind of semantics found in the literature, namely predicate transformer
semantics. Instead of assigning a set of assertions to a program as its meaning, one can assign a
function on predicates, called a predicate transformer, to that program. An example of a predicate
transformer 1s (R] for any binary relation R on states. This transformer maps each predicate Q
into its weakest antecedent [RJQ, Another useful transformer is <R>, defined as transforming any
predicate Q into the predicate ~[R)~Q

The transformer which has received much attention recently is Dijkstra’s weakest pre-
condition wp,. The predicate wp,(Q) is described by Dyjkstra (1976, p. i6) as

“the condition which characterizes all initial states such that activation will
certainly result in a properly terminating happening, leaving the system in a
{inal state satinfying {the condition Q) .

We shall observe that for while-programs, if the primitive instructions A are well-behaved,
eg. i the relations R 4 are in fact functions, then wp, = <Rg> This will enable us to conclude that
In such cases wp yields a predicate transformer semantics which is equivalent to the standard
semantics. However in the general case when nondeterministic primitive instructions occur, wp

semantics 1S incomparable to, ie, it neither determines nor is determined by, the standard
semantics.

As with other kinds of semantics, predicate transformers can be specified in several ways.
We exhibit inductive definitions and deductive systems specifying wp and <R>

51 The Weakest Antecedent and Possible Termination Transformers

The standard weakest antecedent transformer semantics associates to each program a the
meaning (Rg)l Thus by defimition it is determined by the standard relational semantics.
Conversely, observing that (P, Q) holds for R iff =P = [RIQ (¢f. Lemma 3), it follows that the
standard partial correctness semantics is determined by the standard weakest antecedent
transformer. The same observation reveals that we may define the weakest antecedent directly in
terms of pca's as follows:

(M)JQ « V{P | P{a]Q is true for M}

Thus, the predicate transformer semantics based on weakest antecedent carries the same
information as relational and partial correctness semantics.

The predicate <R>Q , defined to be ~(R]~Q,, can be described informally as being true of a

state s providing that: it is always possible starting in state s, to execute a (generally
nondeterministic) program with initial-state, final-state relation R and halt in a state in which Qis

oo . - ——

g A —————ar

true. We refer to <R> as the possidle termination transformer corresponding to R and define the
standard possible termination (ransformer as associating <Rg> with 4. Again, since

(RIQ = =<R>—Q, we see that possible termination semantics carries the same information as
weakest antecedent semantics.

To summarize, we can state

Theorem 11: The standard weakest antecedent transformer, possible termination transformer, partial
correctness, and relational semantics are all equivalent.

5.2 Inductive Definitions of the Weakest Pre-condition and Possible Termination Transformers

For the class of while programs we consider, Dijkstra (197618 clarifies the informal
description of weakest pre-conditions quoted above by giving an inductive definition:

wpl. wPNoP(Q) - Ql
WP2 wpgy = wp,(wpy(Q)
WP3. wpyhite p do ol Q = VkHi

where Hp= ~P AQ,and
Hk‘l - (P A WPG(Hk» v Ho.

If we assume that wp 4 is given for all primitive instructions 4, then WPI-3 uniquely define
the weakest pre-condition predicate transformer. In particular, when, as is typically the case, the
primitive instructions are functional, we expect that wp 4 = <RA>.lg The intuition behind this latter
equation is that it is appropriate to treat an {nstruction as primitive only if it is sure to terminate
whenever there is a legal termination state. It follows that if an instruction can possibly terminate
in a state satisfying Q , ie, if <R >Q holds, then because it is a primitive instruction, it will
certainly terminate in some state, and because it is functional this state of termination is unique and
satisfies Q , ie, wp Q) holds. In this situation, it turns out that weakest pre-condition and
possible termination semantics coincide for all programs of the simple kind we have been
cm\stclex'mg.20

Lemma 7. If wp 4 = <R 4> for all primitive instructions A, then wp, = <R ;> for all programs a.

The proof, which we omit, follows directly by induction on the structure of programs from
WPI-3 and the definition of <R >

As a consequence of Lemma 7, we can replace "wp" by “<R>" throughout WPI-3 thereby
obtaining an inductive definition of <R >.

18

5.3 Deductive Specification of Possible Termination
Assertions of the form "if P holds before executing a, then it is possible for a to halt with Q
holding true” are called termination assertions and are abbreviated P(a)Q, Termination assertions
correspond to possible termination transformers in the same way that pca's correspond to weakest
antecedents.
Definition 6: P(a)Q 15 true for the relational semantics M iff =P - <My>Q).
Thus, we have immediately that

<Mg>Q = V{P | P(a)Q is true for M},

and we can regard a deductive system for termination assertions as providing a specification of the
possible termination transformer.

We remark that termination assertions are a natural generalization of the transition
assertions of Section 32, the transition assertion s(a)f is equivalent to the termination assertion
E{a)E,. where E is the “equals s* predicate true only in state 5. The following deductive system
correspondingly generalizes T1-5.

Axioms:
TAL P(NOP)P,
TA2 (R pQXAQ

TA3 (=PAQXwhile p do Q.

Inference Rules:
TAt P@)Q’, Q'(Q - P(a:)Q;
TAS. Qa)Q*, Q*(while p do a)Q '+ (PAQXwhile p do aXQ' A—P),
TAS. P(a)Q * (P'APXaXQVQ'),
TAY. Pa)Q., Pola)Q - (P VPoXa)Q.
It is easy to see that TAI-7 is sound for the standard relational semantics R. Although not

' all termination assertions true for R are derivable, viz, TAI-7 is not quite complete, those assertions
I whose antecedents are finite are derivable.

-y

19
Theorem 12: Let P be a predicate true in only finitely many states. Then P(a)Q is derivable from
TAI-7 iff P(a)Q is true for the standard relational semantics.

It follows immediately that TAI-7 suffices to determine the standard possible termination
transformers.

Corollary 13. <R>Q ~ V{P | P(a)Q € Th(TAI-7)}.

It is interesting to note that a complete system can be obtained by extending TA7 to an
infinitary rule

TA8. {Pi(a)Qliel} = (VIP;lieI}Xa)Q,
where I is any index set.

Theorem 14: The termination assertions derivable from TAI-8 are precisely those true for the
standard relational semantics.

The proofs of Theorems I2 - 14 are in Appendix E2

54 Weakest Pre-conditions of Nondeterministic Programs

In contrast to all the kinds of semantics considered so far, weakest pre-conditions for
, programs with nonfunctional primitive instructions reflect an understanding of the meaning of
programs which is neither determined by nor determines the meaning given by the standard
semantics.

To illustrate these differences, let Ay be NOP, let A9 be a primitive instruction which resets
every state to a given state s, and let A3 be a primitive instruction which makes a nondeterministic
choice between behaving like 4 or Ag. Thus,

R A- L, the identity on states,

R Ay " S x {spl, the constant function mapping any state s to s, and

RAs"RA] URAZ.

Since A and Ay are primitive and functional, we define

prl(Q) - <RAl>Q- Q_, and
wp AZ(Q) = <R A2>Q_- the constant predicate with value Q(sp).

In order to define the weakest pre-condition transformer for a nonfunctional primitive
instruction such as Aj, we rely on Dijkstra's English description given above, combined with the
intuitive reasoning indicated before Lemma 7. Namely, the pre-condition which “will certainly

) A .

20

result” in post-condition Q after execution of a primitive instruction 4 is [R 4)Q, providing that
execution terminates; for a primitive instruction we expect execution to terminate whenever there is
a final state related to the initial state, that is, whenever <R p>true holds. Thus we define

pra(Q) - [RAlel\ <RA3> true
- [RASJQA true = [RA3]Q.
- QA q’o)zz

Let a; be the program while p do A;, for i =1,2,3and P = =E . Then it follows from RI-3

So‘
that

Ra‘ - R_,p = {(sp.50)), and

Raz'Ras'RAz's"{so}-

On the other hand, it follows from WP3 that
“‘Pal(Q) = '”Pa3(Q) - Eso A Qfsp). and
wpg(Q) = wp 4,(Q) = Qso):

Now we see that the initial-state, final-state relation of a program cannot in general
determine its weakest pre-condition transformer, because a9 and a3 are assigned the same relation
by the standard relational semantics, but define distinct wp transformers. Conversely, the wp
transformer of a program cannot in general determine its initial-state, final-state relation, because a;
and aj have the same wp transformer, but are assigned different relations.

The reason for these discrepancies is, roughly speaking, that the intended interpretation of
how a program “can certainly [emphasis added] result in a properly terminating happening”
reflected in WPI-3 requires, in addition to halting states being possibly accessible and all such states
satisfying proper post-conditions, that there be no possibility of “looping™ or "failing™ branches
among the various courses of a nondeterministic computation (cf. [Harel and Pratt, 1978; Harel,
1978; Hoare, 1978)). Programs ag and a3 differ in that a3 allows a possibility of infinite looping, so
that "’Paz differs from Wpg, even though Raz - R“s' Similarly, even though a3 can halt on every
state and q; halts only on sq, from the point of view of certainty of proper termination, a3 is no

better than a; because aj allows looping in every state other than so; this is reflected in the fact
that “’Pal - "’Pa3 even though R“l # R“s’

It is possible to extend the notion of relational semantics so that looping or failing is
explicitly indicated by the presence of a special state, L, with certain algebraic properties with
respect to the other states. With some care, an extended refational semantics R can be defined
inductively with the result that the extended initial-state, final-state relation of a program does
indeed determine its wp (cf. (deBakker, 1978]). However, the converse difficulty, that wp, does not

determine either R, or Rt remains.

2l

Sausfactory deductive or axiomatic charact.:.. tions of wp for nondeterministic programs
have proven difficult to devise. For this reason among others, we are inclined to agree with the
arguments in (Harel, 1978; Harel and Pratt, 1978) that the semantical ideas implicit in wp are better
treated by considering weakest antecedents, possible termination, looping, and failing, as four
separate notions.

6. Conclusion

We have mainly looked at three kinds of semantics -- relational, partial correctness and
predicate transformer -- and several ways of specifying a semantics -- inductive definitions, axiom
systems, deduction systems. Each semantics was specified with roughly equal economy and complete
precision in several of these ways. There was no particular technical problem in defining
rigorously how specifications determined semantics, although there were three or four different
mathematical mechanisms used to connect the specifications with the intended semantics.

The standard relational and partial correctness semantics are equivalent. This means that
the set of all partial correctness assertions true for our trivial programming language gives exactly
the same information as the relational semantics. (This is true despite the fact that in a certain
narrow technical sense partial correctness assertions cannot be used to express termination of
programs.) Either kind of semantics can be specified directly using an axiom system or a deductive
system; either semantics determines the other, independent of means of specification. For
deterministic programs, similar observations were made about predicate transformer semantics.
However, for nondeterministic programs the predicate transformer wp, may not determine or be
determined by the initial-state, final-state relation of program a. Satisfactory axiomatic alternatives
to the inductive specification of wp, have not been found.

It may be worth remarking that the entire preceding development extends easily to the
somewhat richer programming language considered by Lauer [I971) including conditional and
nondeterministic choice statements, blocks with local variables, and nonrecursive procedure
declarations and calls.

Syntax played a limited role in this paper. Only programs were syntactic objects; predicates
were treated as mathematical, set-theoretic objects. The next refinement of the study begun here
involves restricting predicates to those which are definable in some agreed-upon formal notation,
eg. first or second order logics of appropriate structures. When we restrict predicates in this way
the situation becomes more complicated -- and more interesting -- and the conclusions we reached
above about the equivalence of various kinds of semantics must be modified. Thus, there are cases
where the set of all true definable pca’s may not determine the proper relational semantics; in other
cases a restricted deductive theory may contain only a subset of all true definable pca's and yet
determine the right semantics. We postpone to a later paper further discussion of the restriction to
definable predicates.

o

———

* iy

O T

22

In sum, we have illustrated that, from a purely formai viewpoint, attempting to specify the
meaning of a language in several ways can be made to work - at least for very simple
programming languages when we -- unrealistically -- place no restrictions on the language for
expressing predicates. However, care had to be taken to indicate how each specification was to be
understood before it could be applied by any of the variety of possible users.

Acknowledgements

The authors would like to express their appreciation for the comments and corrections pointed out
by Michael J. Fischer, David Harel, C.AR. Hoare, Peter Lauer, David Park, Rohit Parikh, Michael

S. Paterson, Vaughan R. Pratt, Jerald Schwarz, Carl Seaquist, Joel Seiferas, and Peter van Emde
Boas.

. References
deBakker, J.W. 1975. Flow of Control in the Proof Theory of Structured Programming. I6th

Annual Symposium on Foundations of Computer Science. 1IEEE Computer Society. Long
Beach, Ca. pp 29-33.

deBakker, J.W. 197]. Recursive Programs as Predicate Transformers. Proc. IFIP Conf. on
Formal Description of Programming Concepts at St. Andrews, New Brunswick. pp 7.1-7.15.

deBakker, J.W. 1978. Programming Theory. Unpublished Course Notes. Mathematisch Centrum,
Amsterdam.

deBakker, JW. and L.G.L.T. Meertens. 1975. On the Completeness of the Inductive Assertion
Method. Journal of Computer and Systems Science, 1, pp 323-357.

Dijkstra, EW.D. 1975. Guarded Commands, Non-determinacy and Formal Derivation of
Programs. CACM 18, 8. pp 453-457.

Dijkstra, EW.D. 1976. A Discipline of Programming, Prentice-Hall, Englewood Cliffs, N.J., 217 pp.

Floyd, R.W. 1967. Assigning Meaning to Programs in Mathematical Aspects of Computer Science.
Proceedings of Symposium in Applied Mathematics 19. (ed. J.T. Schwartz). American
Mathematical Society. Providence, R.I. pp 19-32.

Harel, D. 1978. Logics of Programs: Axiomatics and Descriptive Power. Laboratory for
Computer Science Technical Report 200. M.LT., Cambridge, Mass., 152 pp.

Harel, D., A. R. Meyer, and V. R. Pratt. 1977. Computability and Completeness in Logics of
Programs. Proc. of 9th Annual ACM Symposium on Theory of Computing. IEEE Computer
Society. Long Beach, Ca. pp 261-268.

-

23

Harel, D. and V. R. Pratt. 1978. Nondeterminism in Logics of Programs. Conference Record of
the Fifth Annual Symposium on Principles of Programming Languages. ACM, New York,
N.Y. pp 203-213.

Hoare, C.AR. 1978. Some Properties of Predicate Transformers. JACM 25, 3. pp 461-480.
Hoare, C.A.R. 1969. An Axiomatic Basis for Computer Programming. CACM 12, 10. pp 576-583.

Hoare, C.AR. and P. Lauer. 1974. Consistent and Complementary Formal Theories of the
Semantics of Programming Languages. Acta Informatica 3, pp 135-155.

Hoare, C.AR. and N. Wirth. 1973. An Axiomatic Definition of the Programming Language
PASCAL. Acta Informatica 2, pp 335-355.

Lauer, P. 1971. Consistent Formal Theories of the Semantics of Programming Languages. Ph.D.
Thesis. Faculty of Science, Queen's University of Belfast. Technical Report 25.121, 1.B.M.
Laboratory Vienna, Austria. 122 pp.

Manna, Z.1974. Mathematical T heory of Computation. McGraw-Hill, New York, 429 PP

Pratt, V. R. 1976. Semantical Considerations on Floyd-Hoare Logic. I7th Annual Symposium on
Foundations of Computer Science. IEEE Computer Society. Long Beach, Ca. pp 109-121.

Raulefs, Peter. 1977. The Connection Between Axiomatic and Denotaticnal Semantics of
Programming Languages. Interner Bericht Nr. 4/77. Institut fur Informatik 1. Universitat
Karlsruhe. 26 pp.

Schwarz, J.S. 1974. Semantics of Partial Correctness Formalisms. Ph.D. T hesis. Department of
Systems and Information Sciences, Syracuse University. Syracuse, N.Y. 126 PP

TETYSAASM V) @ UNPIT YT UF aXIUMS ana inierence ruies. 1 e Notion of the weakest antecedent,

24

Appendix A.

Proof of Theorem 1.
Theorem I: The standard relational semantics is the only model of HLI-7.

Let T be the set of transition assertions s(a)s’ true for a relational model T of HLI-7. We
will prove by induction on a that (s, s*) € Ry iff s(a)s’ € T. Thus T = R.

If a is NOP then by HLS, s(NOP)s' € T « 5 =5’ « (s, 5') € Ryop. Similarly if a is a
primitive statement, 4, then by HLI, s(A)s' € T « (s5,5') €R 4.

If a is b;c then by HL?2, induction, and R2,
sbic)s' €T
iff Nls(beT A tc)s'€T)
iff l(s, 1) e Ry A(t,s') € Ry)
iff (s, 5') € RyeR,
iff (s, 5') € Ry
The case of while statements follows directly from the following Lemmas Al and A2.
Lemma AL 1f (5. 5*) € Rypile p do b then s(while p do b)s’ € T.

Proof: We need the following

Definition Al: For states s, s‘, program b and predicate P, let disty p(s, s') be the least nonnegative
integer k, if any, such that there is a sequence s .., 5, of states with the property that

(1) sg=s,

() sy = s’ and

(i) P(s)) A (s, 5,1 € Ry, for all nonnegative integers i<k;
If no such k exists the distance distyp (s,5') is said to be infinite.

We take the following two facts as obvious from Definition Al. First, if disty p(s,s') = nel,
then P(s) and there is an s such that (s, s)eR, and distyp(ss’') = n. Second,
(5,5") € Ryypute p do b Hf disty pls, s') is finite and —P(s’).

NIRRT g

C. that FHI-5 specifies the standard partial correctness semantics. Formally, we can state

25
Lemma Al follows by induction on disty p(s s'). If the distance is zero, then s = s* and from
the second fact above we conclude that —P(s). Then by HLS, s(while p do b)s' € T.

By the first fact above, if disGp(s,) = & + | we have P(s) and (s, 5) € R;, for some 5; such
that disty p(s;, s*) = n. From (s, 5) € Ry, by induction we have s(b)s; € T. By induction on n, we
have s\(while p do b)s' € T. Therefore, by HLY, s(while p do b)s’ € T.KLemma Al).

Lemma A2: If s(while p do b)s’ €T then (s, 5') € Rypyte p do b

Proof: Let Q(t) be the predicate (s, 1) € (Ry°Ry)". We claim that Qfs)) A P(s)) A s5y(b)so implies
Q(s9). This follows by definition of Q and the fact that

5)(b)sg € T implies (s}, s9) € Ry, by main induction on a.

We now have Q(s) by definition, and s(while p do b)s’ € T by hypothesis. By HL4 and the
preceding claim, we can conclude Q{s’), and by HL3 and s(while p do b)s’ € T, we have =P(s’).

Now Qfs’) A —P(s’) implies (s, s') € Rypyte p do b bY definition of Ry pye o o p-KLemma
A2).

—

26
Appendix B.

Proof of Lemma 2
Lemma 2: M, = max {(P, Q) | P{a}Q is true for M}.

We first prove the claim that max{.#) is the maximum relation for which all pairs of
predicates in ./ hold.

Definition Bl: Let R be a binary relation on states. Then define .4g = {(P, Q) holds for R}

Note that all the pairs in .# hold for R iff .# c.df. Thus the following lemma
establishes the preceding claim.

Lemma Bl: R c max(.¥) iff M c (.

Proof: (only if) Suppose (P, P') € .. Then by definition of max, P(s) - P'(s’) for all
(s, 5') € max (.#). Thus, if R ¢ max (.4), then P(s) - P'(s’) for all (s, s') € R. That is, by
Definition 2, (P, P*) holds for R. So (P, P') € ./R.

(if) Now assume (s, s') € R. By Definition 2, P(s) = P*(s') for all (P, P) € M. If

M My, then P(s) = P'(s’) for all (P, P') € .4 and s0 (s, 3') € max(.#) by definition of
max.Lemma BI).

Lemma B2: R = max (/). -

Proof: R c max (./R) by Lemma Bl. To show equality, suppose (s, s9) ¢ R. Let Eg be the
predicate true only of state s. Then (E’l' -£,2) holds for R, so (E’l' -vE,2) € .fp and, by

definition of max, (s), s9) & max{. /.ﬁ).l(l.emma B2).

Note that if M is a relational semantics, then "/'Ma « {(P, Q | (P, Q) holds for Mg} =
{(P, Q) | P{a)Q is true for M}, so Lemma 2 follows immediately from Lemma B2.

o —

. .
R A S ™ s

27
Appendix C.

Proof of Theorem 4.

Theorem 4. The set of pca's derivable from FHI-5, is equal to the set of pca's true for the standard
relational semantics.

We prove by induction on the structure of programs that P{a}Q_true for R implies P{a}Q
derivable.

If P{NOP}Q is true for R, then by Definition 2 and Rl we conclude that P implies Q , viz.,
=P -« Q, or equivalently, P VQ = Q Hence P{NOP]Q is derivable by applying FHS to the FHI
axiom P{NOP]}P.

! If P{4}Q is true for R, then by Lemma 3, P implies (R 4]Q, so P{4}Q is derivable by
applying FH5 to the FH2 axiom ([R JJQ){A)Q.

| If P{a;b}Q is true for R, then P{a}([RJQ) must be true for R, as the reader can verify from

Definitions 2, 4, and R2. Also, ([Rp)Q){b}Q_is true for R by Definitions 2 and 4. By induction we
may conclude that P{aK(R,)Q) and ([RpJQ){b}Q are derivable, and therefore P{a:6}Q is derivable
by applying FH3.

Finally, suppose Py{while p do a]Pg is true for R. Let Q = [Rypyz¢ p do gJP2- Then again it
follows directly from the definitions that

(1) Py implies Q,
(2) QA —P implies Py, and
(3) (Q A P){a}Q is true for R.
Then by induction, we conclude from (3) that (Q A P){a}Q_ is derivable. Applying FH4, we
can therefore derive Qfwhile p do a(Q A —P). But we can apply FHS to the latter assertion to

derive (P; A Q){while p do a}Pg V (Q A —P)) which by () and (2) is the same as
Py{while p do a}Po.

We omit the proof that FHI-5 is sound, i.e, if P{a}Q_is derivable then P{a}Q is true for RI

—

28
Appendix D.

Proof of Theorem 5.
Theorem 5: 7 is the only partial correctness model of PCI-4.

The following lemma summarizes some facts about weakest antecedent which are used in the
proof.

Lemma DI: Let R, R, and Rq be relations on states.
(a) 3P (=(P=[RIP*) A =(P' Q) iff =(P-[R]Q).
(®) [R)IR)Q = [Rj*Ro)Q .
(<) =((RMQ ~ Q).
(d) =((R*)Q - [RARIQ).

Proof of DI: (a). The implication from right to left is trivial since we can choose P’ = Q . The
converse follows from the easily verified fact that (RXP'A Q) = [RJP’ A [R]Q (cf. (Pratt, 1976)).

(b). Follows from Definition 4. We omit the details (cf. [Pratt, 1976)).

(c) and (d). Note that [RjURoIQ = [R{JQ A [R9)Q, Hence, [R*JQ = [I U ReR*IQ = [1}Q A [R°R*]Q
= Q A [ReR"]Q.KLemma DI).

Let ./ be any partial correctness model of PCl-4. We show that .#; = R, by induction on
the structure of program a.

(P, Q € ./yop iff (by Def. 5) P{NOP}Q,is true for .# iff (by PCI) =(P + Q) iff (by Def. 2
and Rl) (P. Q) € \‘mop.

(P, Q) € .4, iff (by PC2 and Def. 5) =(P + [R 4)Q) iff (by Defs. 2 and Lemma 3) (P, Q) € H,.
Suppose a = bc. Then (Q. Q') € .4,
iff (by PC3 and Def. 5) IP'(Q.P") e M4 A(P'. Q') € .4)

iff (by induction) IP'(Q.P") e Ay A (P, Q € H)

iff (by Def. 2 and Lemma 3) 3P*((=Q[RyIP*) A =(P'~ [RIQ")
iff (by Lemma DI (a)) =(Q ~ [RIRIQ’)

teational model both of HLI-S and FHI TTTT TIER MR TIAntG & or Section 3.2 s a

5 yet we certai
implementation of our Ianguage in which all wluleyloops diw.-lr’:emly do ot men w accept an

if (by Lemma DI (b)) =(Q = [Ry*R IQ")
iff (by R2, Lemma 3, and Def 2) (Q, Q') € A,
We need the following two lemmas for the case of a = while p do b.
Lemma D2 (Q. Q") € Ryaite p do b Implies
QU =UQ A P) » [RPIQ™M A mQ ~ Q) A =(Q'A-P) - Q')
Proof of D2 (Q. Q) € Hhite p do b
UF Q= Ryypite p do Q"
iff (by R =(Q ~ (RyeRY R JQM)
iff (by Lemma DI (b)) =(Q » [(RP-Rb)“](R R’
iff (by Lemma DI @) 3Q 1(=(Q - [(RyeRY"IQ) A =(Qq = [R_)Q").
Since (R -,p}Q’ 15, by Definition 4, equivalent to <P = Q' , this last formula is equivalent to
IQUQAUR HERYIQ) A =(Q jAP)-Q" N

Let Q" = [\RP-R M IQy where Qg is a predicate whose existence is guaranteed by the previous
formula. Then by definition of Q*, =(Q -+ Q"). By Lemma DI (c), =(Q"~ Q). This fact and
=({(Qy AP) = Q') imply that =(Q"A-P) = Q'). Thus we need only show that =(Q"AP) -
(Rp)Q®). By Lemma DI (d), =(Q* - [Rp’Rb]Q'). which by Lemma DI (b) and Definition ¢
implies =(Q*AP) -« [RyJQ") KLemma D2).

Lemma D3 (Q. Q"¢ Roaite p do b implies

=IQ QN AP) = [RYIQ™M A =(Q =+ Q") A ={(Q"A-P) = Q')

Proof of D3 11 (Q. Q") ¢ Aaite p do b then by Definition 2, there exists 5.s* satisfying
(1) Q) Alss’) € Rypige p dod A~Q'(s").

Since (s, s') € Ry 20 p do b We have —P(s'), and, as we observed in Appendix A, there is a
sequence of states sy, $ such that

(l) o= 5

(1) sy = s’ and

(1) P(s) A (5, 5¢,,) € Ry for all nonnegative integers i<k.

Now assume Q" satisfies

(v) =(Q ~ Q")

(v) =((Q"AP) - [Rp)Q"). and
(vi) =(Q"A-P) - Q).
If k=0, then s=s°, 30 =P(s), (iv), and (vi) together imply Qfs) = Q'(s'), which contradicts (+).

If k>0, then by (+) and (iv) we have Q"(sg). By (iii) and (v) we conclude Q*(s;) for 1<k.
Then ~ P(s*), (it), and (vi) imply Q'(s’), again contradicting (¥).KLemma D3).

We can now complete the proof of Theorem 5.
Suppose a = while p do b. Then (Q, Q') € .4;
iff (by PCH) 3QU(PAQ"), Q) € . A =(Q + Q") A =(Q"A-P) + Q"))
iff (by induction) 3Q"[(PAQ"), Q") € R A =(Q + Q") A =(Q"A-P) » Q"))
iff IQ [=(PAQ") = [RIQ") A =(Q » Q") A =(Q" A =P) » Q"))
iff (by Lemmas DIl and D2) (Q, Q') € % KTheorem 5)

e

B

o e anac o o

3
Appendix E.

Proofs of Theorem 12, Corollary 13, and Theorem 4.

Theorem 12: Let P be a predicate true in only finitely many states. Then P(a)Q is derivable from
TAI-7 iff P(a)Q is true for the standard relational semantics.

In what follows, truth of termination assertions will be counted with respect to R, and
derivability with respect to TAI-7.

Soundness of the system TAI-7 follows directly from the definitions. That is, if Q(a)Q’ is
derivable, then it is true. We omit details of the proof.

Conversely, we prove completeness for termination assertions with finite antecedents by

induction on program structure. Namely, if Q(a)Q' is true and Q is finite, then Q(a)Q’ is
derivable.

If @ is NOP or a primitive statement, then all true assertions Q(a)Q' are obviously derivable
from TALl 2 and 6.

If @ is bic and Q(b;c)Q ' is true, then by TR2 and Definition 6 of termination assertions, there
is, for every state s such that Q(s), a state sequence s..s”..s' such that Q'(s’), s..s' € Try, and
s"..s' € Tr.. Let Q" = V{E;w | Qfs)}. Note that if Q is finite, so is Q". Moreover, Q(b)Q* and

Q"(c)Q are true, and so by induction hypothesis they are derivable. But then Q(b;c)Q " is derivable
from them by TA4.

If a is while p do b, we first observe that if E(a)E, is true, then it is derivable. For if E(a)E,
is true, then as in the proof of Lemma Al we have either

(i) disty p(st) = 0,50 s = t and —P(s), and therefore E (a)E, is derivable by TA3, or

(ii) disty p(s,t) = nsl, E‘(b)E’l is true, E,l(a)E, is true and disty, p(s)) = n, for some state
s;. Then by induction on n, E,l(a)l-‘., is derivable, and by the main induction
hypothesis l-:s(b)lisl is derivable, and therefore (PAE,XaXE, A—P) is derivable from

TAS5. But since distb,p(s,l) > 0, we have P(s), and hence P A E; = E;. Also since
E,l(a)E, is true, we have —P(s) and hence E; A =P = E;,. Therefore E((a)E, is

derivable.

Finally, if Qa)Q' is true, then it follows by definition that for every s such that Q(s), there is
a ¢ such that Q'(t) and E(a)E, is true. By the preceding observation Ey(a)E, is derivable, and
hence E(a)Q' is derivable by TA6. But Q = V{E; | Qs)}, so if Q is finite, then Qa)Q’ is
derivable by TA7 from {E (a)Q' | Qs)}.KTheorem 12).

e

" . RGN TR L2 T
| o oo

32

Corollary 13: <Rz>Q = V{P | P(a)Q € Th(TAI-7)}.

Proof: (<Rg>QXs) iff (by definition of <R,>) Hl(s.4) € R, A Q1)
iff (by Definition 6) E (a)Q is true
iff (by Theorem 12) E(a)Q_is derivable
iff (by TA6) 3PP A E, = E; and P(a)Q is derivable)
iff the righthand predicate is true of s.KCorollary 13).

Theorem 14: The termination assertions derivable from TAI-8 are precisely those true for the
standard relational semantics.

Proof: Soundness of TAS follows immediately from the logical equivalence of Vi[P; -~ Q) and
3i[Pi] -Q

To prove completeness, assume P(a)Q is true. Then E(a)Q is true for all s such that P(s),
and so is derivable by Theorem 2. But since P = V{E, | P(s)}, we can derive P(a)Q by
TAS8.KTheorem I4).

-
B

;—-,—«—w-““ vy gy s e e g

lmultive reasomng indicated before Lemma 7.

TreTnMnsuviiar prinmave
bove, combined with the
Namely, the pre-condition which “will certainly

~>r =» a3, we rely on Dijkstra's English descripttonvglve'n;

Notes .

L. In a later paper Hoare (1978] emphasizes the verification aspects of proof rules rather than their
use as a means of specifying semantics. However, it is the latter use on which we focus here.

2. We avoid the use of the word "nondeterministic” here because nondeterminism is a property of
how final states are computed from initial states, rather than merely being a property of which
initial states map to which final states. Nonfunctional relations can only arise from
nondeterministic programs, but functional relations do not necessarily arise only from deterministic

programs.

3. We emphasize that in this paper predicates are mathematical objects, not to be confused with
expressions denoting them.

4. This definition is essentially taken from Pratt's (1976, Section 3., p. 115) definition of “"e-ary
relation semantics.”

5. Technically speaking, HLI-5 are axiom schemes in which g, b may be any programs, Q any
predicate, etc.

6. Pca’s are usually defined to be wholly syntactic objects, namely, to be of the form p{alq where p,
q are predicate expressions. Similarly, in the thesis on which the Hoare and Lauer paper is based,
Lauer (1971, p. 67] defines a syntactic version of partial correctness semantics. Namely, he associates
with each program a certain set of pairs of predicate expressions.

However none of the theory we treat in this paper depends on the syntax of the expressions
used for predicates, and for this reason it is simpler to let the predicates themselves appear as
components of pca's. In this way we avoid having to introduce rules for syntactic manipulation of
expressions, and also avoid problems arising from the fact that certain predicates may not be
definable using a particular class of expressions. We plan to treat these latter problems in a later
paper (cf. Section 6, third paragraph).

7. A similar observation is made by Pratt (1976, section 1.2).

8. Indeed, partial correctness semantics are potentially richer than relational semantics because not
all partial correctness semantics are derived from relational semantics. Put formally, any relation,
«# on predicates must be contained in {(P, Q) | (P, Q) holds for max (.#)}, but the containment is
proper in general. Such an ./ does not correspond to the set of all partial correctness assertions
true for any single relation on states. We shall, however, make no use in this paper of partial
correctness semantics which are not equivalent to relational semantics.

9. The "box" notation is taken from the “necessity” operator of modal logic following the

| s v

PR TV T LTS WA TEIais TuUTTe Teemeey v e) g
ind':mnvely with the result that the extended initial-state, final-state relation of a program does

indeed determine its wp (cf. [deBakker, 1978]). However, the converse difficulty, that wp, does not

determine either R; or R al remains.

3¢
suggestion of Pratt (1976). Dijkstra (1976) refers to weakest antecedents as weakest liberal pre-
conditions. Schwarz [1974) called them exact semantic backward connections.

10. Hoare and Lauer omit FHI -- a minor oversight. Their D3 is misprinted, but it is clear from
their Lemma 9 that they intended to state FH4.

Il. In Lauer's thesis (1971 a “rule of consequence” equivalent to FH5 is included.

12. Theorem 5, in particular the characterization of while statements by PC4, is implicit in Lemma
23 of deBakker [1975].

13. Technically speaking, we should say that R is a model of Th(FHI-5) and Th(TI-5) where
Th(.7’) refers to the set of theorems deducible in deductive system £

14. This seems to be the technical content of the frequently heard remark that pca'’s cannot be used
to assert termination, (¢f. eg. [Hoare, 1969, [Manna, 1974), [Pratt, 1976])). The remark is correct, but
must not be misinterpreted as implying that pca's are an inherently inadequate means of specifying
semantics. As we have seen in Lemma 2, the complete set of true pca's uniquely determines R
despite the anti-monotonicity of pca's.

15. Hoare and Lauer refer to "theorems..proved in the relational theory", rather than mentioning
models explicitly. They do not offer rules of inference for proving theorems from HLI-5, although
Lauer (I1971] indicates by example that he intends the usual rules of predicate calculus to be applied.
We prefer the more general definition of consistency (implication) we have formulated in terms of
models, since this definition is not vulnerable to failures springing from the frequently unavoidable
incompleteness of effective inference rules. If we assume that a complete set of inference rules are
available, or alternatively if we use the model-theoretic notion of theorem, namely, an assertion is a
theorem when it is true of all models of the axioms, then their formulation of consistency is
equivalent to ours.

16. Note that although FHI-4 specify R according to the technical hypotheses of Theorem 9, it is
not true that Th(FHI-4) = Th(FHI-5), or even that R is the largest model of Th(FHI-4).

We regard the characterization of R in Theorem 10 as subtle because there is no particular
reason to look at largest models in the context of an axiomatization like HLI-5. Indeed, we saw that
by adding HL6-7 only one model is possible, so there is no reason to expect or rely on a condition
like maximality to force uniqueness.

17. A similar observation is made by Raulefs (1977, Lemma 2-1, p. 11).

18. Dijkstra’s definitions can be found on pp. 25, 30 and 35. Our WP3 can be obtained from
Dijkstra’s definition of the do..od construct (p.35) by noting that whilep doa is equal to
dop ~aod

ii

35

19. Note that for programs which are not primitive statements, the restriction that R, be a function
is not sufficient to ensure <R ;> = wp, (¢f. the examples in section 5.4).

20. Lemma 7 does not generalize much beyond the trivial class of while programs we are
considering. In particular, when nondeterministic program constructs such as guarded commands
are allowed in programs, Lemma 7 does not hold.

2l. Recapitulating the developments in earlier sections, we could regard TAI-7 or TAI-8 as
specifying the standard relational models rather than possible termination transformers. Indeed
Theorem 7 together with Theorems 12 and 14 immediately imply that R is the smallest relational
model of TAI-7 and/or TAI-8. Since termination assertions, like transition assertions, are monotone,
we cannot hope to determine R as the unique model of TAI-8.

However, note that by fashioning a deductive system involving both pca’s and termination
assertions, using FHI-5 and TAI-7 for example, one can obtain R as the unique model. Our point
here is that there is no special inadequacy of deductive specifications which prevents them from
determining a unique model.

22. Alternatively, we can reach the same definition of wp‘:‘ by regarding A3 as the

nondeterministic join of 4] and Ao. That is, using Dijkstra’s guarded command notation, Ay is
equivalent to if true+A| Il true=Aq fi, so that prs =wp A Awp Ao (Dijkstra, 1976, p.34].

March, 1979

Defense Documentation Center
Cameron Station
Alexandria, VA 22314

12 copies

Office of Naval Research
Information Systems Program
Code 437
Arlington, VA 22217

2 copies

Office of Naval Research
Branch Office/Boston
495 Summer Street
Boston, MA 02210

1' copy

Office of Naval Research
Branch Office/Chicago
536 South Clark Street
Chicago, IL 60605

1 copy

Office of Naval Research
Branch Office/Pasadena
1030 East Creen Street
Pasadena, CA 91106

1 copy

New York Area Office
715 Broadway - 5th tloor
New York, N. Y. 10003

1 copy

Naval Research Laboratory
Technical Information Division
Code 2627
Washington, D. C. 20375

6 copies

Assistant Chief for Technology
Office of Naval Research
Code 200
Arlington, VA 22217
1 copy

Office of Naval Research
Code 455

Arlington, VA 22217

1 copy

OFFICIAL DISTRIBUTION LIST

Dr. A. L. Slafkosky
Scientific Advisor
Commandant of the Marine Corps
(Code RD-1)
Washington, D. C. 20380
1 copy

Office of Naval Research
Code 458
Arlington, VA 22217

1 copy

Naval Electronics Lab Center
Advanced Software Technology
Division - Code 5200
San Diego, CA 92152

1 copy

Mr. E. H. Gleissner
Naval Ship Research & Development Center
Computation & Math Department
Bethesda, MD 20084
1 copy

Captain Grace M. Hopper
NAICOM/MIS Planning Branch
(OP-916D)
Office of Chief of Naval Operations
Washington, D. C. 20350

1 copy

Captain Richard L. Martin, USN
Commanding Officer
USS Francis Marion (L.PA-249)
FPO New York, N. Y. 09501

1 copy

